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Background
Spatially resolved transcriptomic technologies have revolutionized the detection of 
mRNA expression by preserving spatial information, thereby facilitating the exploration 
of biological functions at spatial level [1, 2]. In general, spatial transcriptomics technolo-
gies can be categorized into two types: high-throughput sequencing-based technolo-
gies [1, 3, 4] and fluorescence in situ hybridization (FISH)-based technologies [5], each 
exhibiting distinct advantages and limitations. Sequencing-based technologies provide 
high-throughput profiling of the whole transcriptomes while sacrifice spatial resolution, 
as they detect gene expression at multiple spatially defined sites called spots. FISH-based 
technologies such as MERFISH [6], seqFISH [7], seqFISH+ [8], osmFISH [9] et al., on 
the other hand, achieve single-cell resolution while exhibit lower throughput and limited 
transcript detection capabilities. Additionally, several in situ sequencing-based technol-
ogies, including STARmap [10] and FISSEQ [11], achieve single-cell resolution, however, 
with lower throughput. Recently, Stereo-seq has emerged as a technology capable of 
achieving subcellular resolution while also maintaining high throughput [12].

Despite the development of various spatially resolved transcriptome technolo-
gies, the analysis of spatial transcriptomics data remains a significant challenge, par-
ticularly in the context of spatial domain analysis. Spatial domains refer to specific 
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With the rapid advancements in spatial transcriptome sequencing, multiple tissue 
slices are now available, enabling the integration and interpretation of spatial cellular 
landscapes. Herein, we introduce SpaDo, a tool for multi-slice spatial domain analysis, 
including modules for multi-slice spatial domain detection, reference-based annota-
tion, and multiple slice clustering at both single-cell and spot resolutions. We dem-
onstrate SpaDo’s effectiveness with over 40 multi-slice spatial transcriptome datasets 
from 7 sequencing platforms. Our findings highlight SpaDo’s potential to reveal novel 
biological insights in multi-slice spatial transcriptomes.
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regions in space that consist of multiple cells and are often associated with the tis-
sue’s anatomical structure and specific functions [13]. These spatial domains can 
be considered as the fundamental functional units that contain spatial information 
for downstream analysis. Currently, several methods have been developed for spa-
tial domain detection, which can be categorized into three groups: (1) traditional 
domain detection methods, including Seurat [14] and Scanpy [15] et  al., which do 
not explicitly consider spatial information. These methods are often used as base-
lines for domain detections. (2) Statistical model-based methods, such as BayesS-
pace [16] et al., are developed based on the simple assumption that spatially adjacent 
spots are more likely to exhibit similar gene expression patterns. However, they are 
not designed specifically to handle single-cell spatial transcriptome. (3) Graph neural 
network-based methods, including SpaGCN [17], SEDR [18], STAGATE [19] et  al., 
assume that the gene expression information of each spot can be reconstructed using 
its neighboring information. Typically, a low-dimensional embedding of each spot, 
containing spatial information, is obtained. Nonetheless, challenges like relatively 
high computational complexity or limited interpretability may exist.

In addition, although existing methods can detect spatial domains within a single tis-
sue slice, they cannot directly handle multi-slice spatial domain analysis for multiple tis-
sue slices in general. With the rapid advancement of spatial transcriptomes, there is an 
increasing accumulation of multiple tissue slices that can be integrated to unravel spa-
tial cellular landscapes. For instance, the integration of multi-slice spatial transcriptomic 
data identified specific cell types with spatial dependencies in the diseased state of myo-
cardial infarction, shedding light on new pathogenic mechanisms and novel therapeutic 
options [20]. In addition, the analysis across multiple slices revealed that tertiary lym-
phoid structures (TLS), which are organized immune cell groups found in nonlymphoid 
tissues and are often associated with improved tumor prognosis, have exhibited stable 
and consistent cell type composition [21]. Therefore, multi-slice spatial transcriptome 
domain analysis is fundamental in dealing with the accumulating multi-slice spatial 
transcriptomic data, despite the significant challenges it presents. It is worth noting that 
several computational methods, such as PASTE [22] and SLAT [23], have been devel-
oped for pairwise alignment of slices. However, these methods are primarily focused on 
aligning single cells or spots. They cannot be applied directly to analyze spatial domains 
across multiple slices, thereby limiting their applications.

To this end, we propose SpaDo (multi-slice spatial transcriptome domain analysis) for 
multi-slices spatial transcriptome analysis at both single-cell and spot resolution. Spe-
cifically, SpaDo contains three functional modules: multi-slice spatial domain detection, 
reference-based spatial domain annotation, and multi-slice clustering analysis. SpaDo 
shows several key advantages, including good interpretability, robustness, and tolerance 
to noise and batch effects.

The superiority of SpaDo is demonstrated by a comprehensive investigation on over 
40 sets of multi-slice spatial transcriptomic data obtained from 7 different spatial tran-
scriptome sequencing platforms, including osmFISH, seqFISH + , STARmap, MERFISH, 
10 × Visium, old ST, and Slide-seqV2 [4] (Additional file 1: Table S1). The results of our 
study highlight the significant potential of SpaDo to gain novel biological insights from 
multi-slice spatial transcriptomes.
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Results
Overview of SpaDo

SpaDo is a comprehensive computational framework for multi-slice spatial domain anal-
ysis, including four main components (Fig. 1): (1) cell type annotation, (2) calculation of 
SPatially Adjacent Cell type Embedding (SPACE), (3) Jensen–Shannon divergence (JSD)-
based hierarchical clustering, and finally (4) multi-slice spatial domain analysis.

SpaDo firstly requires proper cell type annotations for each slice. Depending on the 
resolution of the spatial transcriptomic data (either single-cell or spot resolution), differ-
ent strategies are adopted (Fig. 1a and see “Methods”). For single-cell resolution spatial 
transcriptomics data, reference-based annotation methods [24, 25] or clustering meth-
ods such as Seurat v4 [14] are recommended. For spot resolution spatial transcriptomics 
data, Cell2location [26] is used as spot deconvolution method for SpaDo.

Secondly, SpaDo calculates SPatially Adjacent Cell type Embedding (SPACE). SpaDo 
initiates the process by determining the local niche of each cell/spot through a search 
of k-nearest neighbors in the case of single-cell resolution spatial transcriptomics data 
or neighbors within a specific radius for spot resolution spatial transcriptomics data. 
SPACE is subsequently derived by fusing cell type annotations with the niche informa-
tion of each cell/spot, thereby integrating gene expression and spatial information.

Thirdly, SpaDo has the capability to identify spatial domains across all spots/cells from 
multiple slices through hierarchical clustering of SPACE, based on Jensen–Shannon 
divergence, across all spots/cells from multiple slices. Consequently, the spatial domains 
identified by SpaDo are derived from a combination of multiple slices rather than being 
limited to a single slice. By tracing back and mapping these detected spatial domains to 
each individual slice, SpaDo enables the alignment of spatial domains across multiple 
slices, thereby facilitating multi-slice spatial domain analysis (Fig. 1b and see “Methods”).

Fig. 1 Workflow of SpaDo. a Calculating SPACE for both single-cell and spot resolution spatial transcriptomic 
data. SPACE SPatially Adjacent Cell type Embedding. b Three functions involved in multi-slice spatial domain 
analysis: multi-slice domain detection, reference-based spatial domain annotation, and multi-slice clustering 
analysis by consideration of spatial domain composition. JSD Jensen–Shannon divergence
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Finally, SpaDo enables multi-slice spatial domain analysis, including: (1) multi-slice 
spatial domain detection: SpaDo detects consistent spatial domains across multiple 
slices; (2) reference-based spatial domain annotation: SpaDo leverages spatial refer-
ences, which are spatial transcriptomic data with domain annotations, to annotate new 
sequenced spatial transcriptomic data. Specifically, spatial domain labels in reference are 
assigned to the query cells based on the minimum distance, and (3) multi-slice cluster-
ing analysis: SpaDo calculates slice-level similarity using spatial domain composition 
(see “Methods”) and performs clustering analysis at the slice level. This function is par-
ticularly useful for analyzing spatial transcriptomics data with multiple time points or 
varying conditions.

Particularly, we would like to highlight the advantages of SPACE embedding compar-
ing to other complex GNN-based spatial embedding methods like SEDR, SpaGCN, and 
STAGATE: (1) SPACE is highly interpretable, aligning well with the biological nature of 
spatial domains, which often encompass specific cell types with functional relationships 
[13, 21, 27–29]. (2) SPACE effectively addresses batch effects, as it is designed based on 
the spatial relationships of cell types, ensuring consistency across slices through various 
automated cell type annotation strategies [24–26, 30] and clustering methods [14, 15]. 
As a result, SPACE is naturally suited for integration between multiple slices without 
the need for additional batch correction. (3) SPACE primarily relies on cell type annota-
tions rather than detailed spatial information. The differences between spatial domains 
are apparent and do not require fine details, as supported by two recent studies [31, 32]. 
This characteristic makes SPACE tolerant to noise and robust to diverse variations in 
spatial transcriptomics data.

Evaluation of SpaDo for single‑slice spatial domain detection

We firstly conducted a comprehensive evaluation of SpaDo against other single-slice-
based spatial domain detection methods for both single-cell and spot resolution spatial 
transcriptome (Fig.  2), which serves as the foundation for multi-slice spatial domain 
analysis.

The spatial domains detected by SpaDo form a multi-resolution schema hierarchically, 
enabling the characterization of spatial structures dynamically with different resolutions. 
In order to distinguish the spatial domains under different resolutions, we adopt the fol-
lowing naming scheme for the spatial domains by assigning each domain in a specific 
resolution with a term ID “Domain_N1_N2”, where  N1 represents the resolution level 
(i.e., the number of detected domains, the larger the higher resolution) and  N2 repre-
sents the ID of specific domain. For illustration, we elucidate the naming scheme with 
DLPFC_151673 (10 × Visium) data from the dorsolateral prefrontal cortex (DLPFC) 
datasets [33], as detailed in Additional file 1: Fig. S1. Furthermore, we present the results 
of multi-resolution spatial domain detection for osmFISH (Additional file 1: Fig. S2) and 
STARmap data (Additional file 1: Fig. S3).

To illustrate SpaDo’s superior performance in single-slice spatial domain detection, 
we conducted a comparative analysis with well-established single-slice spatial domain 
detection methods, including Seurat v4 [14], Scanpy [15], SEDR [18], SpaGCN [17], 
STAGATE [19], and BayesSpace [16]. Our evaluation covered three key perspectives: 
(1) spatial domain detection on single-cell spatial transcriptomics data, (2) spatial 
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domain detection on spot resolution spatial transcriptomics data, and (3) TLS-like 
domain detection.

For the first test (Fig. 2a), we can see that SpaDo outperformed Seurat v4, Scanpy, 
SEDR, SpaGCN, and STAGATE across three single-cell spatial transcriptomic data-
sets from three different platforms: osmFISH [27], STARmap [10], and seqFISH+ 
[8], each exhibiting different levels of complexity in domain structures (Fig.  2a and 
Additional file 1: Figs. S4-S6). We excluded BayesSpace in this test as it is specifically 
designed for spot resolution spatial transcriptome.

For the second test (Fig.  2b), SpaDo outperformed Seurat v4, Scanpy, SEDR, 
SpaGCN, and BayesSpace on 12 spot resolution dorsolateral prefrontal cortex 
(DLPFC) datasets [33]. STAGATE was excluded from this test due to its instabil-
ity and occasional failure with spot resolution data. In addition, using two DLPFC 
datasets (DLPFC_151675 and DLPFC_151676) as examples, we demonstrated Spa-
Do’s ability to significantly improve its performance by integrating multiple slices 

Fig. 2 SpaDo outperforms existing single-slice spatial domain detection methods. a Performance of 
SpaDo and other methods (Scanpy, Seurat v4, SEDR, SpaGCN, and STAGATE) on three single-cell spatial 
transcriptomic datasets. ARI adjust rand index. b Performance of SpaDo and other methods (Scanpy, Seurat 
v4, SpaGCN, SEDR, and BayesSpace) on 12 spot resolution spatial transcriptomic datasets. c Single CPU 
(SpaDo, Scanpy, Seurat v4, SpaDo, BayesSpace) and single GPU (SpaGCN, SEDR, STAGATE) runtime when 
tested in DLPFC_151673 data (3639 spots). d Single CPU (SpaDo, Scanpy, Seurat v4, SpaDo, BayesSpace) and 
single GPU (SpaGCN, SEDR, STAGATE) memory usage when tested in DLPFC_151673 data. e Visualization of 
TLS-like domain detection of SpaDo and other methods (BayesSpace, SEDR, SpaGCN, Scanpy, and Seurat v4) 
on 4 RCC spatial transcriptomic datasets
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(Additional file 1: Fig. S7). This underscored SpaDo’s adaptability and effectiveness in 
optimizing results, especially in challenging dataset scenarios.

For the third test (Fig. 2e), we evaluate four renal cell cancer (RCC) slices [34] with 
well-annotated tertiary lymphoid structures (TLS) regions. TLS is a widely recognized 
spatial domain with a relatively consistent cell type composition, primarily consisting 
of T cells and B cells. In this test, we utilized the minimum domain number at which 
SpaDo can detect TLS-like domains. This choice was made to highlight SpaDo’s maxi-
mum sensitivity in comparison to other methods. As shown in Fig. 2e, SpaDo outper-
formed other methods by accurately detecting TLS-like domains that aligned well with 
the manually annotated labels. We also evaluated the effect of varying the number of 
domains and found that SpaDo consistently outperformed other methods, even when 
selecting a larger number of domains (Additional file 1: Fig. S8). Furthermore, SpaDo is 
user-friendly, demonstrating both time efficiency (Fig. 2c) and memory usage efficiency 
(Fig. 2c–d).

The validation of robustness of SpaDo

The robustness of methods for analyzing spatial transcriptomics data is crucial, given 
the inherent noise in such data. Therefore, we conducted a comprehensive analysis to 
assess SpaDo’s robustness from the following four different aspects (Fig. 3).

Firstly, we evaluated the robustness of two key parameters in SpaDo: the number of 
nearest neighbors for single-cell resolution spatial transcriptomic data (Fig.  3a) and 
the radius sizes for spot resolution spatial transcriptomic data (Fig. 3b). We found that 
SpaDo maintains robustness across varying numbers of nearest neighbors (Fig. 3a) and 
a range of radius sizes (Fig.  3b). It is worth noting that when Radius = 1, SpaDo may 
not fully leverage spatial information unless the spot radius for spatial transcriptome 
sequencing methods is very large, such as old ST, so it is lower than other radius value 
significantly, which is included here solely as a baseline.

Secondly, SpaDo relies on accurate cell type annotations for both single-cell and spot 
resolution spatial transcriptomics data. In this study, SpaDo employed Seurat v4 for 
single-cell spatial transcriptomics data and Cell2location [26] for spot resolution data 
to obtain these annotations. The Cell2location was selected based on its strong perfor-
mance in a third-party benchmarking paper [35]. Furthermore, we validated the robust-
ness of SpaDo to Seurat v4 parameters for cell type annotation across three single-cell 
spatial transcriptomics datasets (Fig. 3c). We also investigated the application of other 
widely used spot deconvolution methods, including SPOTlight [36] and RCTD [37], 
for 12 spot resolution DLPFC slices (Fig. 3d). We can see that SpaDo is robust to spot 
deconvolution methods, with Cell2location achieving the highest median.

Third, we utilized Jensen–Shannon divergence (JSD) to calculate the distance for Spa-
Do’s SPACE of each spot/cell. To assess SpaDo’s robustness to different distance metrics, 
we evaluated its performance using commonly employed metrics like Spearman correla-
tion, Pearson coefficient, Cosine distance, Euclidean distance, Manhattan distance, and 
JSD for both single-cell (Fig. 3e and see “Methods”) and spot resolution spatial transcrip-
tomics data (Fig.  3f and see “Methods”). SpaDo consistently demonstrated robustness 
across these different distance metrics, with JSD delivering the highest median.
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Lastly, given the inherent noise in spatial transcriptomics data, we assessed SpaDo and 
other existing methods’ sensitivity to sequencing depth and dropouts. Taking osmFISH 
(single-cell resolution) and DLPFC_151673 (spot resolution) data as examples, we arti-
ficially increased dropout rate by randomly setting 10%, 30%, and 50% of the nonzero 
expression values to zero. We observed that SpaDo exhibited tolerance to higher drop-
out rates, while other methods were notably affected (Fig. 3g, h and see “Methods”).

SpaDo effectively mitigates batch effects in multi‑slice integration

Most existing spatial transcriptome analysis methods are limited to single-slice spatial 
domain analysis, as they are unable to integrate gene expression and spatial information 
across multiple slices. However, with the advancement of spatial transcriptomics, it has 

Fig. 3 The validation of robustness of SpaDo. a Performance of SpaDo with different numbers of nearest 
neighbors on three single-cell spatial transcriptomic datasets. No. of NNs: number of nearest neighbors. 
b Performance of SpaDo with different radius. c Performance of SpaDo when using cell type annotation 
from original paper or Seurat v4 with different value of parameter “Resolution” on osmFISH, seqFISH, and 
STARmap datasets. R resolution. d Performance of SpaDo when using different spot deconvolution methods. 
e Performance of SpaDo when using different distance metrics on three single-cell spatial transcriptome 
datasets. f Performance of SpaDo when using 12 DLPFC datasets. g Performance of SpaDo with increased 
dropout rates on osmFISH dataset. The red line represents the original performance of each method. h 
Performance of SpaDo with increased dropout rates on DLPFC_151673 dataset. Percentage of extra dropouts 
is shown on the right of the plots. The red line represents the original performance of each method
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become possible to obtain multiple slices from the same tissue and integrate them to 
gain novel biological insights [20, 21].

Notably, one of the most significant challenges lies batch effect during the integra-
tion process. As mentioned earlier, SpaDo utilizes SPACE to integrate gene expression 
and spatial information. SPACE is designed to leverage the spatial relationships among 
cell types, which ensures consistency across slices through various automated cell type 
annotation strategies [24, 25, 30] and spot deconvolution methods [14, 15]. Therefore, 
SpaDo is theoretically tolerance to batch effects.

To further prove this point, we made comprehensive comparisons between SpaDo and 
other existing methods for addressing batch effects on both single-cell and spot resolu-
tion spatial transcriptomics data (Fig. 4 and Additional file 1: Fig. S9). For spot resolution 
spatial transcriptomics, we tested four DLPFC slices, which belong the same sample with 
the same seven layers. We compared SPACE utilized in SpaDo (Fig.  4a), embeddings 
obtained by SEDR, and SpaGCN with and without harmony [38] to correct batch effects 

Fig. 4 The batch effects evaluation of SpaDo and other existing methods for multi-slice domain detection. 
a Umap of SpaDo on four DLPFC slices (colored by slices). b Umap of SEDR and SpaGCN with and without 
harmony on four DLPFC slices (colored by slices). c Umap and hierarchical clustering result of SpaDo on 
four DLPFC slices (colored by detected spatial domains). d Locations of spatial domains detected by SpaDo 
on four DLPFC slices. e Locations of spatial domains detected by SEDR incorporated with harmony on four 
DLPFC slices. f Locations of spatial domains detected by SpaGCN incorporated with harmony on four DLPFC 
slices
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(Fig. 4c). The results demonstrate that SpaDo’s spatial embeddings (SPACEs) effectively 
mitigate batch effects across multiple slices. In contrast, the embeddings from SEDR and 
SpaGCN, even when combined with harmony [38], do not align well among multiple 
slices. Furthermore, we performed multi-slice domain detection with SpaDo (Fig. 4c, d). 
Then, for embeddings obtained by SEDR and SpaGCN combined harmony, we adopted 
similar strategy to perform multi-slice domain detection (Fig. 4e, f and see “Methods”). 
We can see that only SpaDo obtained consistent domain results between 4 DLPFC slices 
(Fig. 4d–f). We obtained the similar conclusions on 3 MERFISH data (Additional file 1: 
Fig. S9).

We clarify this observation by emphasizing that embeddings generated through 
alternative methods, such as SEDR, SpaGCN, and STAGATE, are restricted to distinct 
training spaces within individual data slices. As a result, embeddings from different 
slices produced by these methods do not align, even when applying batch correction 
techniques like harmony. In contrast, SPACE is inherently grounded in the spatial dis-
tribution of cell types, a feature that remains uniform across diverse slices. The good 
interpretability of SPACE in representing spatial domains, combined with this consist-
ency, forms the foundation for its superior performance.

SpaDo enables multi‑slice spatial domain detection

We illustrated the utility of SpaDo to detect spatial domains that can be comparable 
across multiple slices, which is crucial for studying shared spatial function across slices.

Specifically, we performed TLS-like domain detection across multiple slices (Fig. 5).
We used five RCC slices with manually annotated TLS regions, four of which con-

tained one or two TLS regions, while the remaining slice with no TLS region served as a 
negative control [34]. In this test, SpaDo successfully detected five spatial domains with 
default spatial domain number selection method (Fig. 5e and see “Methods”). In addi-
tion, SpaDo also provided the exact proportion of each cell type within each detected 
domain, demonstrating its good interpretability (Fig. 5a). Notably, among the five spa-
tial domains, “Domain_5_1” exhibited significant enrichment of B cells, CD8 T cells, 
and T helper cells, distinguishing it from the other four spatial domains (Fig. 5b). Fur-
thermore, “Domain_5_1” was detected as a consensus domain showed in all four TLS 
positive slices but not in the negative control slice (Fig. 5c). These findings indicate that 
“Domain_5_1” represents a common TLS-like spatial domain associated with impor-
tant immune function. The locations of “Domain_5_1” in the four slices were consistent 
with the manually annotated TLS labels (Fig.  5f ), further confirming the capability of 
SpaDo to detect consensus spatial domains across multiple slices. These consensus spa-
tial domains can be potential spatial markers. Finally, similar results were obtained even 
when the spatial domain number was set to 3, demonstrating the strong robustness and 
high sensitivity of SpaDo to detect TLS-like spatial domain (Additional file 1: Fig. S10).

SpaDo enables reference‑based spatial domain annotation

The annotation of spatial domains is an important task while primarily done manu-
ally, which is laborious and time-consuming. As spatial transcriptomic datasets with 
manually annotated spatial domains are becoming more prevalent, SpaDo can be used 
to annotate spatial domain automatically. Specifically, SpaDo leverages these datasets, 
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referred as spatial references with spatial domain labels, to annotate newly sequenced 
spatial transcriptomes. This strategy is conceptually similar to the popular tools like 
BLAST [39] for sequence alignment or our previous strategy scLearn et al. for automatic 
cell type annotations using single-cell transcriptomic references [24, 25, 30]. In the case 
of SpaDo, it performs a search by measuring the distance between the SPACE of the 
query cells and that of the centroid of each spatial domain in the spatial reference. Then, 
spatial domain labels in reference are assigned to the query cells based on the minimum 
distance (see “Methods”).

Currently, there are only a few methods available for the automatic annotation 
of spatial domains, such as Seurat v4 and PASTE [22]. Seurat v4 annotates spatial 
domains using a similar strategy of SpaDo. However, Seurat v4 calculates the spa-
tial domain centroid based on gene expression solely without spatial information. 
PASTE annotates spatial domains by performing pairwise alignment of slices to find 

Fig. 5 SpaDo enables consensus spatial domain detection across multiple slices. a Cell type proportion of 
each detected domain. b Comparison of cell type proportion in each detected spatial domain. c Proportion 
of detected spatial domains for each RCC slice. d Umap and hierarchical clustering result of SPACE on five 
RCC slices (colored by slices). e Umap and hierarchical clustering result of SPACE on five RCC slices (colored by 
detected spatial domains). f Location of detected spatial domains against manually annotated TLS labels in all 
five RCC slices
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the optimal probabilistic mapping between spots in one slice and spots in the other 
slice. However, PASTE is limited to adjacent slices thus unsuitable for diverse slices. 
To demonstrate the superiority of SpaDo in this task, we tested eight commonly used 
DLPFC datasets [33] for spatial domain annotations. Each dataset was treated as a 
reference or query data, respectively, resulting in a total of 56 dataset pairs (permuta-
tion A2

8 = 56) (Fig. 6a and see “Methods”). As a result, it is clearly shown that SpaDo 
achieved a much higher macro-F1 score compared to Seurat v4 and PASTE (Fig. 6a). 
Additionally, we illustrated these results using “DLPFC_151673” as the spatial refer-
ence and the remaining seven DLPFC datasets as queries. The UMAP visualization 
of SPACE calculated by SpaDo for “DLPFC_151673” was highly consistent with the 
manually annotated spatial domain annotations (Fig. 6b, c). Furthermore, SpaDo out-
performed Seurat v4 in terms of annotation accuracy for all query datasets (Fig. 6d, 
f ). PASTE, on the other hand, almost failed in five out of seven datasets, predicting all 
spots as belonging to the same spatial domain (Fig. 6g).

Fig. 6 Benchmarking SpaDo with other methods for automatically annotating spatial domains. a macro-F1 
of SpaDo, Seurat v4, and PASTE on eight DLPFC datasets. b Locations of manually annotated spatial domains 
in dataset “DLPFC_151673”. c Umap of SPatially Adjacent Cell type Embedding calculated by SpaDo (colored 
by manually annotated spatial domains). d Manually annotated spatial domains of eight DLPFC datasets. e 
Locations of spatial domains annotated by SpaDo. f Locations of spatial domains annotated by Seurat v4. g 
Locations of spatial domains annotated by PASTE
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SpaDo enables multi‑slice clustering analysis

Multi-slice clustering analysis plays a crucial role in studying spatial heterogeneity 
alongside developmental status [40, 41]. The key idea to perform multi-slice clustering 
analysis lies in calculating similarity of different slices. Traditionally, the global similarity 
of multiple slices is measured based on the assumption that similar slices have a similar 
cell type composition, without considering spatial information. However, SpaDo takes 
a different perspective by assuming that if two slices are similar, their spatial domain 
compositions (Figs. 1b and 7f, and see “Methods”) are also similar, and vice versa. This 
enables SpaDo to perform multi-slice clustering analysis properly.

As a result, we conducted a comparison using three spatial transcriptomic studies [40–
42] to evaluate the performance of SpaDo for multi-slice clustering analysis. The first 
study focused on constructing a spatiotemporal cell atlas of the developing human heart, 
utilizing 19 spatial transcriptomic (ST) slices from the developing human heart at three 
developmental stages, i.e., 5, 6, and 9 post-conception weeks (PCW) (Fig.  7). We ini-
tially performed multi-slice spatial domain detection using SpaDo (Fig. 7a). The datasets 
with the same time points tended to cluster together, indicating that SpaDo effectively 
captured the underline information of each slice without being affected by batch effects 
(Fig. 7b). It was observed that slices from the same time points exhibited similar spatial 
domain compositions (Fig.  7d). Furthermore, when compared to the baseline method 
(calculating slice similarity with cell type composition), SpaDo demonstrated more con-
sistent clustering results (Fig. 7e, f, and see “Methods”). Importantly, this improved per-
formance was found to be robust across different selected domain numbers (Additional 

Fig. 7 SpaDo enables multi-slice clustering analysis. a Umap and hierarchical clustering result of SPACE on 19 
human heart slices (colored by detected spatial domains). SPACE SPatially Adjacent Cell type Embedding. b 
Umap of SPACE on 19 human heart slices (colored by slices). c Cell type proportion of each detected domain. 
d Location of each detected domain in 19 slices. e Heatmap of clustering results of 19 slices using cell type 
composition as baseline. f Heatmap of clustering results of 19 slices using spatial domain composition 
detected by SpaDo
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file 1: Fig. S11). Similar results were obtained in the other two datasets, i.e., the develop-
ing chicken heart dataset [42] (Additional file 1: Figs. S12 and 13) and the human cortical 
organoid dataset [41] (Additional file 1: Fig. S14). These findings highlight the capability 
of SpaDo to efficiently integrate spatial information to measure the global similarity of 
multiple slices in multi-slice clustering.

Discussion
With the advancement of spatial transcriptomes, multiple tissue slices are increasingly 
accumulating and can be further integrated to uncover new insights into transcrip-
tomic and cellular landscapes. However, the challenge lies in effectively integrating gene 
expression and spatial information in a manner that is both interpretable and compa-
rable across multiple slices. Current strategies have been limited to single-slice domain 
analysis with relatively high computational complexity and limited interpretability. 
Therefore, we propose SpaDo as an efficient framework designed to facilitate multi-slice 
spatial domain analysis at both single-cell and spot resolution.

SpaDo performs spatial transcriptomics analysis with three key applications: multi-
slice spatial domain detection, reference-based spatial domain annotation, and multi-
slice clustering analysis. With examination of over 40 diverse spatial slices from various 
biological contexts and sequencing platforms, we proved that SpaDo is robust to differ-
ent parameters and tolerant to noise (Fig.  3). In addition, SpaDo effectively addresses 
batch effects without additional correction. In summary, SpaDo greatly enhances the 
analysis of spatial transcriptomics data, especially in scenarios involving multi-slice spa-
tial domains.

The key innovation of SpaDo lies in its design of a simple yet effective embedding 
called SPACE. By combining cell type annotation with spatial niche, SPACE successfully 
integrates gene expression and spatial information across multiple slices, demonstrat-
ing tolerance to high noise and batch effects (Figs.  3 and 4). We highlight three main 
reasons why SPACE outperforms other complex spatial embedding methods like SEDR, 
SpaGCN, and STAGATE: (1) SPACE demonstrates good interpretability by aligning well 
with the biological characteristics of spatial domains. (2) SPACE effectively addresses 
batch effects. (3) Differences between distinct spatial domains are relatively obvious 
and do not require particularly fine spatial information to distinguish them [31]. There-
fore, although SPACE may smooth features and reduce tissue heterogeneity, it still per-
forms well in multi-slice spatial domain analysis. In our study, we did not observe that 
SPACE simplifies spatial structures (Figs. S4 and S6, and Fig. 2e). We speculate that three 
reasons may exist here. Firstly, while there may be a loss of spatial information at the 
individual cell level, the essential spatial information—specifically, the composition of 
cell types throughout the entire spatial domain—is effectively preserved. Secondly, the 
inherent noise resistance of smooth operation aids in eliminating noise from spatial 
transcriptomic data by using SPACE embedding. Lastly, recent studies [31, 32] support 
that the discernible distinctions between spatial domains do not necessitate intricate 
details. In summary, SPACE maintains a delicate balance between noise tolerance and 
feature smoothing in spatial domain detection, making it well-suited for the integration 
of multiple slices.
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SpaDo has three potential limitations. Firstly, it depends on cell type annotation meth-
ods like Seurat v4 and Cell2location. Nevertheless, even in scenarios where cell type 
annotation methods exhibit slightly suboptimal performance, SpaDo continues to dem-
onstrate relatively favorable outcomes (Fig. 3c, d). Secondly, while we have demonstrated 
that SPACE, designed by SpaDo, is well-suited for spatial domain analysis, it may tend to 
smooth features and reduce tissue heterogeneity. Therefore, caution should be exercised 
when applying SPACE to analyses beyond the spatial domain. Thirdly, SpaDo specifically 
focus on the spatial domain analysis of multiple slices, which maybe not suitable for cell-
level 3D tissue reconstruction.

While our study primarily focuses on applying SpaDo to spatial transcriptomic data, 
it is noteworthy that SpaDo holds the potential for extension into multimodality spatial 
data analysis. This extension could be particularly valuable if corresponding cell types 
across different omics datasets are identifiable. Notably, advancements in spatial epi-
genomics [43, 44] and technologies like slide-DNA-seq [45] present exciting opportu-
nities for integrating epigenetic and DNA information into spatial analyses. As spatial 
DNA-seq technologies like slide-DNA-seq continue to evolve, they offer the potential 
to decipher more accurate tumor evolution patterns [46]. SpaDo, in turn, is poised to 
leverage these developments and combine spatial multimodal data from multiple slices. 
This integration holds the promise of uncovering new tumor markers, including both 
consistent and differential tumor evolution patterns, thereby contributing to a deeper 
understanding of spatial biology.

Conclusion
In summary, SpaDo stands out as a pioneering framework for multi-slice spatial domain 
analysis in spatial transcriptomics. Its superior performance in detecting multi-slice 
spatial domains, providing reference-based spatial domain annotation, and conducting 
multi-slice clustering analysis addresses the limitations of single-slice domain analysis. 
The SPACE embedding ensures good interpretability, strong robustness, and high noise 
tolerance, making SpaDo a valuable spatial transcriptomics analysis tool for researchers.

Methods
Data description

SpaDo is designed to be compatible with all spatial transcriptomic sequencing technolo-
gies and platforms. In this study, we specifically tested its performance on the osmFISH, 
STARmap, seqFISH + , MERFISH, 10 × Visium, ST, and Slide-seq V2 platforms (Addi-
tional file 1: Table S1). Notably, the DLPFC dataset [33] includes 12 human DLPFC slices 
sampled from three individuals. The DLPFC layers and white matter (WM) were manu-
ally annotated by the original study. To obtain the cell type abundance of the above 12 
DLPFC slices, we performed spot deconvolution using Cell2location [26] with a single-
cell transcriptomic data [47] of DLPFC as reference.

The MERFISH dataset [48] used in our study comprised three samples with Animal_
IDs 31, 32, and 33. These samples were characterized by a Bregma value of 0.16 and a 
specific behavioral trait described as “Aggression to adult”.

The RCC dataset [34] used in our study includes five RCC slices (10 × Visium): 
“GSM5924041_ffpe_c_51”, “GSM5924043_frozen_a_3”, “GSM5924044_frozen_a_15”, 
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“GSM5924046_frozen_b_1”, and “GSM5924047_frozen_b_7”. Among these, the first four 
slices contain one or two TLS regions, while the last slice without TLS region is taken 
as negative control. We performed spot deconvolution of the above 5 RCC slices using 
Cell2location with single-cell transcriptomic data [49] (P76 and P90) of RCC as the ref-
erence, and the annotations of cell subtypes from the original study were merged to 17 
main cell types.

The human heart dataset [40] used in our study consists of 19 slices (ST), representing 
the developing human heart at three developmental stages in the first trimester: 5, 6, and 
9 post-conception weeks (PCW). We used single-cell transcriptomic data from the origi-
nal study as a reference to obtain the cell type deconvolution results with Cell2location.

The chicken heart dataset [42] used in our study consists of 11 slices (10 × Visium) 
obtained from the early to late four-chambered heart stage: 4, 7, 10, and 14  days. We 
used single-cell transcriptomic data from the original study as a reference to obtain the 
cell type deconvolution results with Cell2location.

The organoid dataset [41] used in our study comprises 10 slices (Slide-seq V2) 
obtained from the developing human cortical organoid at 1, 2, and 3 months. Given the 
high resolution of Slide-seq V2 (Each spot has a diameter of 10 μm and contains about 
1–3 single cells), we analyzed the organoid dataset as single-cell resolution spatial tran-
scriptomic data. Cell type labels were obtained from the original study.

Data preprocessing

We applied different normalization methods depending on the spatial transcriptomic 
platform used for data generation. For datasets generated from osmFISH, STARmap, 
and MERFISH platforms, we followed the normalization methods recommended by 
their respective original studies. This involved dividing the gene counts per cell by the 
total counts per cell, followed by a log transformation (log(1 + normalized counts)). For 
datasets obtained from other platforms, including seqFISH + , 10 × Visium, ST, and 
Slide-seq V2, we performed the standard normalization procedure using the Seurat 
package. This involved normalizing the gene expression measurements for each cell/spot 
by the total expression, multiplying the result by a scaling factor of 10,000, and finally 
applying a log transformation (log(1 + normalized counts)).

Cell type annotation

SpaDo employs distinct strategies for cell type annotation depending on the resolution, 
whether it is at the single-cell or spot level.

For single-cell resolution spatial transcriptomics data, in our study, we utilized cell 
type labels from the original studies. In cases where these labels were unavailable, we 
employed Seurat v4, selecting the top 2000 highly variable genes with default param-
eters and obtaining cell type annotation results using the parameter “resolution = 2”. 
Importantly, the robustness of SpaDo to the “resolution” parameter of Seurat v4 was 
demonstrated in our analysis (Fig. 3c). It is important to note that for multi-slice single-
cell resolution transcriptomic data, Seurat must be applied to the entire multi-slice gene 
expression profile to ensure consistent cell type annotation results.

On the other hand, for spot resolution spatial transcriptomics data, in our study, SpaDo 
specifically utilized Cell2location [26] to obtain spot annotations. The robustness of SpaDo 



Page 16 of 23Duan et al. Genome Biology           (2024) 25:73 

to other spot deconvolution methods, such as RCTD and SPOTlight, was also demon-
strated (Fig. 3d). It is important to highlight that, for multi-slice spot resolution transcrip-
tomic data, Cell2location should be applied to the entire multi-slice dataset using the same 
single-cell reference to ensure consistent spot deconvolution results.

Calculating SPatially Adjacent Cell type Embedding

SpaDo employed two distinct strategies to calculate SPatial Adjacent Cell type Embedding 
(SPACE) for single-cell and spot resolution spatial transcriptomic data, respectively. For 
single-cell spatial transcriptomic data, the K-nearest neighbors (KNN) method was used 
to identify the adjacent cells of each cell because KNN is able to take full advantages of 
density information. Then, SpaDo calculated the cell type proportion of these adjacent cells, 
obtaining the SPACE for each cell. For spot resolution spatial transcriptomic data, SpaDo 
obtained adjacent neighbors of each spot by searching within a specified radius as spot is 
distributed evenly. Then, SpaDo calculated the cell type proportion using the deconvolution 
results of these adjacent spots.

In multi-slice domain detection, we initially generated a SPACE for each slice. Given the 
consistent cell type annotations across all slices, meaning they share the same embedding 
space, the SPACEs of cells/spots from different slices became comparable. SpaDo achieved 
this by concatenating each individual SPACE, thereby obtaining a unified SPACE represen-
tation for multiple slices.

Spatial domain detection

In this study, spatial domains are defined as clusters of cells or spots with similar SPACE 
from single or multiple slices.

For spatial domain detection in each slice, a distance matrix of SPACE was calculated 
firstly. To measure the similarities of SPACEs, SpaDo were equipped with two distance 
metrics, the Jensen–Shannon divergence (JSD) [50] and Manhattan distance. As a widely 
used measure of distribution distance, the JSD is based on the Kullback–Leibler divergence 
(KL) between two distributions. The KLD of SPACE between two cells or spots P and Q is 
defined as:

As a symmetrized, finite, and smoothed version, JSD is defined as follows:

where M = (P + Q) / 2. A smaller JSD value indicates a higher similarity between the dis-
tributions, while a larger value suggests greater dissimilarity.

Manhattan distance (MD) is also equipped as a candidate in SpaDo software because it is 
much faster than JSD by sacrificing a little accuracy. MD is the sum of absolute differences 
between points in their cartesian coordinates and is calculated as:

KL(P,Q) = Pi ∗ log(Pi/Qi)

JSD(P,Q) = (KL(P,M)+ KL(Q,M))/2

MD(P,Q) =
∑

|Pi − Qi|
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Next, SpaDo detects spatial domains by applying hierarchical clustering to the distance 
matrix. Hierarchical clustering is performed using the hclust() function from R package 
with default parameters.

For multi-slice spatial domain detection, firstly, SpaDo calculates SPACE of cells or spots 
for each slice. Because all slices have consistent cell type annotations, i.e., they have the 
same embedding space, we concatenate SPACE of each slice together to calculate the JSD 
distance and then perform hierarchical clustering to detect spatial domain. Finally, each 
domain is backtracked to each slice.

The selection of proper domain numbers

The spatial domain with different resolutions can be obtained by selecting proper domain 
numbers (Additional file  1: Fig. S1). To determine the optimal spatial domain number, 
SpaDo offers three optional strategies: (1) automatic selection using the cutreeDynamic() 
function with parameter “deepSplit = 2” from R package dynamicTreeCut [51]; (2) manually 
set by users based on their prior knowledge or specific requirements; and (3) visualization 
of the hierarchical trees and UMAP clustering results can assist in determining the optimal 
spatial domain number. The last two strategies allow for customization, providing a high 
level of flexibility and interpretability in the analysis of spatial domains. In this study, for 
each test data, different approaches were employed. If region labels were provided in the 
original study, the number of regions will be used as the spatial domain number. If not, 
SpaDo adopted the first strategy to determine the optimal spatial domain number.

Spatial domain annotation with spatial reference

SpaDo utilizes the annotated datasets, called spatial reference, to annotate newly acquired 
spatial transcriptomes, referred to as spatial domain queries. Specifically, this process con-
sists of the following four steps: (1) for each spatial domain in the spatial reference, the cen-
troid is calculated by averaging the SPACE of all cells/spots identified as the same domain; 
(2) the SPACE of each cell/spot in the spatial query dataset is calculated; (3) the JSD dis-
tance between the SPACE of each cell/spot in the spatial query and each centroid of SPACE 
of spatial domain in the spatial reference is calculated; and (4) the spatial domain in the 
reference with the minimum JSD distance is assigned as the annotation for corresponding 
cell/spot in the spatial query.

Multi‑slice clustering analysis

Intuitively, SpaDo performs multi-slice clustering analysis by assessing the similarity 
between multiple slices. The similarity is calculated by spatial domain composition. Firstly, 
SpaDo performs the multi-slice spatial domain detection for multiple slices. Then, the spa-
tial domain composition of individual slice is calculated, which is defined as:

where Ci is a vector, meaning the spatial domain composition of the i-th slice, and N  is 
the number of detected domains in all slices. Dij is the number of cell/spot identified as 
the j-th domain in the i-th slice. If the j-th domain is absent in the i-th slice, the Di,j is set 
to 0. Mi is the number of cell/spot in the i-th slice.

Ci =

[

Dij

Mi

]

, j = 1, . . .N



Page 18 of 23Duan et al. Genome Biology           (2024) 25:73 

Finally, SpaDo performs hierarchical clustering on the spatial domain composition of 
all slices using pheatmap() function from R package pheatmap with default parameters.

Parameter settings in this study

SpaDo incorporates several key parameters, including the number of k nearest neigh-
bors for single-cell spatial transcriptomics data, searching radius for spot resolution spa-
tial transcriptomics data, and the domain number.

In all tests conducted in this study, the number of k nearest neighbors is consistently 
set to 30. The selection of the domain number varies based on the test data. If region 
labels are available in the original study, the number of regions is used as the spatial 
domain number. In cases where region labels are not provided, SpaDo automatically 
selects the domain number using the cutreeDynamic() function with the parameter 
“deepSplit = 2” from the R package dynamicTreeCut [51].

Regarding the searching radius, the default value is “Radius = 2” for all test data, except 
for the human heart dataset [40]. For the human heart dataset [40], derived from old ST 
where each spot has a diameter of 100 μm and contains about 10–40 single cells [1], the 
searching radius is set to 1. This adjustment is made to accommodate the specific char-
acteristics of the dataset.

Sensitivity to distance metrics

It is important to note that SpaDo calculates the distance of SPACE for each spot or 
cell by default using JSD. To validate its robustness, we systematically compared SpaDo’s 
performance when employing various distance metrics, which include Euclidean dis-
tance, Manhattan distance, Spearman correlation, Pearson correlation, Cosine similarity, 
and JSD. Specifically, for Spearman, Pearson, and Cosine, where the results represent 
similarity within the range of − 1 to 1, the corresponding distance was obtained using 
“1—similarity”. This analysis provides a comprehensive evaluation of SpaDo’s stability 
across a spectrum of distance measurement approaches.

Sensitivity to sequencing depth and dropouts

The sensitivity of SpaDo to sequencing depth and dropouts was assessed to account for 
the inherent noise in spatial transcriptomics data. Specifically, we artificially increased 
the dropout rate in the DLPFC_151673 and osmFISH datasets by randomly setting 10%, 
30%, and 50% of the nonzero expression values to zero (Fig.  3g, h). For each dataset, 
n = 20 random dropout assignments were performed.

The batch effects evaluation of SpaDo

SpaDo effectively addresses batch effects, as demonstrated through a compre-
hensive analysis involving four spot resolution DLPFC datasets (DLPFC_151673, 
DLPFC_151674, DLPFC_151675, DLPFC_151676), as well as three single-cell resolution 
MERFISH datasets. For the spot resolution DLPFC datasets, we compared the SpaDo 
embedding strategy SPACE with embeddings obtained from SEDR and SpaGCN, both 
with and without harmony [38]. Harmony was applied using default parameters. Sub-
sequently, to evaluate the performance of SEDR and SpaGCN after incorporating har-
mony, we calculated the “1-Pearson correlation” as the distance between each spot 
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embedding. In contrast to SpaDo, we refrained from using JSD in this context, given that 
the embeddings from SEDR and SpaGCN are not distributions and are thus unsuitable 
for JSD. Following this, we applied the same hierarchical clustering method as SpaDo to 
conduct multi-slice domain detection for SEDR and SpaGCN, with the specified domain 
number set at 7.

For the three MERFISH datasets, we conducted a parallel comparison involving the 
SpaDo embedding strategy SPACE and embeddings derived from SEDR, SpaGCN, 
and STAGATE, with and without harmony. We followed the same analytical steps as 
described above, employing default settings for domain number selection.

Evaluation metrics

To evaluate the performance of SpaDo, ground-truth information such as the true spa-
tial domain labels were utilized to calculated two performance metrics: adjusted rand 
index (ARI) and macro-F1.

For spatial domain detection with single slice, ARI was used to evaluate the perfor-
mance of each method:

where ni,j is the number of cells that are assigned to the i-th predicted domain label with 
their true domain label as the j-th label, ai =

∑

i

(

nij
)

 and bj =
∑

j

(

nij
)

.
For spatial domain annotation with multiple slices, macro-F1 was used to evaluate the 

performance of each method:

where N denotes the number of spatial domains in a dataset. Precisioni and Recalli are 
the precision and recall of the i-th spatial domain in the dataset.

Benchmarking methods

In this study, we benchmarked SpaDo with Scanpy, Seurat v4, SEDR, SpaGCN, STA-
GATE, BayesSpace, and PASTE in different tests with default parameters (Additional 
file 1: Table S2).

For spatial domain detection using single-cell spatial transcriptomic data, we bench-
marked Scanpy, Seurat v4, SEDR, SpaGCN, and STAGATE with default parameters. 
BayesSpace was excluded from this scenario as it was specifically designed for spot reso-
lution spatial transcriptomics data. Identical number of domains was set as in the origi-
nal study.

For spatial domain detection using spot level spatial transcriptomic data, we bench-
marked Scanpy, Seurat v4, SEDR, SpaGCN, and BayesSpace with default parameters. 
STAGATE was excluded due to its occasional instability and failure in handling spot res-
olution data. Identical number of domains was set as in the original publications.
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For reference-based spatial domain annotation, we benchmarked PASTE and Seurat 
v4 with default parameters.

In the sensitivity test of SpaDo combined with spot deconvolution methods, we 
benchmarked Cell2location against RCTD and SPOTlight. For Cell2location, the single-
cell regression model was trained with default parameters and the Cell2location model 
was obtained with parameter detection_alpha = 20 for all datasets. Specifically, “N_cells_
per_location” was set to 10 for RCC and DLPFC datasets and 20 for human and chicken 
heart datasets. RCTD and SPOTlight were performed with default parameters.

In all benchmarking tests, the tools were executed on a system with Intel Xeon 
E5-2696 v4 CPU (2.20 GHz) and GeForce GTX GPU 1080 Ti.
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